MODELAGEM MATEMÁTICA DA CINÉTICA DE SECAGEM DE GRÃOS DE CAFÉ ARABICA ORGÂNICOS DURANTE O PROCESSO DE TORRA

MODELIZACIÓN MATEMÁTICA DE LA CINÉTICA DE SECADO DE GRANOS DE CAFÉ ARABICA ORGÁNICO DURANTE EL PROCESO DE TOSTADO

MATHEMATICAL MODELING OF THE DRYING KINETICS OF ORGANIC ARABICA COFFEE BEANS DURING THE ROASTING PROCESS

Ana Letícia Toté de Medeiros¹; Wallysson Wagner Vilela Santos²; Gustavo Henrique Daniel Santos Silva³, Marteson Cristiano dos Santos Camelo⁴, Suzana Pedroza da Silva⁵

RESUMO

O café pertence a família Rubiaceae, gênero Coffea, e é uma das bebidas mais consumidas no mundo. A espécie Coffea arabica é a mais produzida (responsável por cerca de 75% da produção mundial). Dentre as etapas da cadeia produtiva do café a torrefação apresenta grande impacto na qualidade do produto final, responsável pela ocorrência de reações físicas e químicas que fornecem aos grãos a cor, aroma e sabor característicos. Dentre estas reações tem-se a vaporização da água dos grãos e estudar a cinética de secagem é importante para compreender melhor a ocorrência do processo. O objetivo deste trabalho foi modelar a cinética de secagem dos grãos de café orgânico (Arabica typica) durante a torra. Os grãos de café foram coletados no Sítio Várzea Grande, na Cidade de Taquaritinga do Norte – PE; foram torrados a 200°C/13 min e sete amostras coletadas com base no tempo médio de ocorrência de reações químicas importantes: P0 (grão cru), P1 (180s), P2 (415s), P3 (546s), P4 (646s), P5 (705s) e P6 (grão torrado). O teor de água (U) dos grãos foi determinado pelo método da estufa (105°C/24h) e a atividade de água (aw) foi medida em aparelho AquaLab da marca METER. O código computacional para modelagem foi feito no Software GNU Octave utilizando modelos de cinética de secagem (Newton, Page, Peleg, Henderson e Pabis, Logarítmico, Verma e Peleg). A adequação dos modelos foi verificada através do coeficiente de determinação (R2), erro médio relativo (P) e erro médio estimado (SE) e da análise da distribuição dos resíduos. O valor de U(P0), grãos crus, foi de 12,459±0,1568% e, ao final do processo U(P6)=2,884±0,041%. Esse decrescimento é explicado pelo aumento da temperatura interna dos grãos, devido ao fornecimento de calor no torrefador, que causa a vaporização da água naturalmente presente nos grãos. A maior variação de U ocorreu entre P0 e P3 (decréscimo de 7,077%) e, ao analisar o comportamento da aw, houve grande diminuição deste parâmetro neste mesmo intervalo, o que permite inferir que a maior parte da água perdida nos momentos iniciais da torra é representada pela água livre no interior dos grãos. Esta diminuição de U é desejável, pois torna o produto final mais estável, evitando a contaminação e a proliferação de microrganismos. O modelo de Page apresentou os melhores ajustes aos dados (R²=0.9990) e baixos valores de erro (P=2.0403 e SE=0.0112). Além disso, a distribuição dos resíduos se demonstrou não tendenciosa, capaz de descrever de forma satisfatória o processo nas condições avaliadas. Este é um bom resultado tendo em vista que o modelo de Page possui apenas um parâmetro, simples e de fácil utilização. Portanto, o teor de água dos grãos decresce durante a torra, devido a absorção de calor, e a cinética desta secagem pode ser descrita pelo modelo de Page, nas mesmas condições de torra aqui utilizadas.

Palavras-Chave: Café Orgânico, Cinética de secagem, Modelagem matemática, Torrefação.

¹ Engenharia de Alimentos, Universidade Federal do Agreste de Pernambuco, <u>analeticiatote@gmail.com</u>

² Engenharia de Alimentos, Universidade Federal do Agreste de Pernambuco, wallysson70@gmail.com

³ Engenharia de Alimentos Universidade Federal do Agreste de Pernambuco, gd30440@gmail.com

⁴ Dr em Engenharia Química, Universidade Federal do Agreste de Pernambuco, marteson.camelo@ufape.edu.br

⁵ Dra em Engenharia Química, Universidade Federal do Agreste de Pernambuco, <u>suzana.pedroza@ufape.edu.br</u>